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This report has been divided into three parts: 1.I
S1. Personnel (students employed to date).

2. Preparation (steps taken to prepare for completing objectives).

3. Progress (work completed toward accomplishing objectives).

4. Publications (publication of initial results).

1. Personnel

Master's student (began October 1, 1993)--studying MCM
implementation of an MCAP.

Master's student (began December 1, 1994)--wrote the
graphical interface for the simulator and is now
studying algorithms.

Master's student (began January 16, 1994)--helped test
and modify the program assembler needed by the
simulator and is now studying algorithms.

Undergraduate student (began January 16, 1994)--testing
the simulation portion of the simulator and writing
the portion for outputting results. ,

Undergraduate student (began January 16, 1994) -- testing ___

the simulation portion of the simulator and embedding
error checking into the simulator. ME M5
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In addition, two Ph.D students have committed to working
on wafer scale integration and design of the memory con-
trollers and a post-doctorate has been hired at a 30% rate
to help Dr. Sergio Cabrera on his study of algorithms.

2. Preparation

The preparation has consisted of attending the conferences:

Dr. Chang and a master's student: IEEE International Conference
on Wafer Scale Integration, January, 1993, San Francisco, CA

A master's student (only the airfare was paid by contract), SPIE
Symposium on Electronic Imaging Science and Technology, Feb.,
1994, San Jose, CA

Dr. Singh and a master's student: IEEE Kultichip Module Con-
ference, March, 1994, Santa Cruz, CA

3. Progress
Objective 1 (register-level design of MCAP): The register-
level design and preliminary estimates of power, number of
connections, and so on is 80% complete (see attachments).

Objective 2 (architecture/algorithm case studies): The study
of relative speeds and routing patterns as different algorithms
and architectures are considered is just beginning.

Objective 3 (two memory controller designs): One of the designs
is complete, but is awaiting the completion of the simulator for
evaluation. The other design has not begun.

Objective 4 (technology evaluations): Preliminary work has
concentrated on CMOS and MCM packaging. This phase is nearing
completion and work involving high-speed technologies and
wafer-scale integration is beginning.

Objective 5 (simulator development): Except for the memory
controller components, the simulator has been completed and is
currently being tested.

4. Publications

The attachments to this report have been submitted to the
following conferences, respectively:

A. Seventh International Conference on Parallel and Distrib-
uted Computing Systems, October, 1994, Las Vegas, NV 0

0
B. Sixth IEEE Symposium on Parallel and Distributed Processin

October, 1994, Dallas,TX
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ABSTRACT

A new architecture for high-performance parallel attached processors is described in this pa-
per. Based on this architecture, an attached processor can be implemented as multiple memory-

to-memory pipelines, each being constructed with a class of fundamental components. The
unique features are that the attached processor can be configured to match a set of algorithms

and its memory controllers can be programmed to fit the access patterns required by the algo-
rithms. As a result, high utilization of the processing logic for given sets of algorithms can be

obtained. An example based on matrix multiplication is used for illustration. Finally, design
issues related to the implementation of the attached processor based on an MCM technology

are discussed.

Index Terms: Attached processor, interconnected pipeline, memory-to-memory pipeline, sus-

tained execution rate, multichip module.

'The work reported in this paper was supported in part by the Office of Naval Research under Grant No.
N00014-93-1-1343. Any opinions, findings, and conclusions or recommendations expressed in this paper are those
of the authors and do not necessarily reflect the view of the funding agency.



1 Introduction

An attached, or back-end, processor is a processing system that is connected to a host

computer for the purpose of very quickly executing most of the overall system's computational

tasks. In such an organization, "the host is a program manager which handles all I/O, code

compiling, and operating system functions, while the back-end attached processor concentrates

on arithmetic computation with data supplied by the host machine" [1].

Typical early attached processors were the AP-120B and FPS-164 made by Floating Point

Systems, Inc., the IBM 3838, and the MATP made by Datawest, Inc. [1], [21, [3]. These attached

processors all have their own data memories and transfer data between these memories and

the main memories of their hosts using DMA data channels. They also include their own code

memories where subprograms may be permanently stored or downloaded from their hosts. These

subprograms are initiated by commands from the host and supervise the data flows from the

attached processor's data memories, through the attached processor's processing elements, and

back into the data memories.

Although the early attached processors included limited multiprocessing, the more recently

implemented processing arrays are also controlled by a host (e.g., the PAX computer [4]) and are

designed to perform most of the overall system's computational tasks. Therefore, these arrays

and even the array processing portions of today's supercomputers, such as the Cray series [1), [3]

could be interpreted as attached processors, although the host is then sometimes referred to as

a front-end computer.

The specific purpose of an attached processor is to execute members of a set of algorithms

very quickly. The broader the set of algorithms the more generally applicable the attached

processor. The underlying goal of the designer is to efficiently utilize the hardware for as broad

a set of algorithms as possible. However, for most current designs, the average sustainable ex-

ecution rates have been found to be only 5% to 20% of their peak rates, which are determined

by summing the maximum computational rates of the processing elements. For example, the

sustainable rate for a Cray X-MP with four processors may be as low as 5% for some algo-
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rithms [5]. Also extensive evaluations of recent high-performance computations using Lapack

are given in [6] and using NSA parallel benchmarks are given in [7]. Although some of tite lost

efficiency is necessitated by the algorithms, much of it is due to memory accessing and contention

for shared resources in general, including internal buses.

Described in this paper is a class of high-performance attached processors called Modularly

Configurable Attached Processors (MCAPs) which can attain quickness and high utilization

through:

"* Closely matching their architectures to the set of algorithms they are to execute.

"* Overlapping of processing and memory accessing by using memory prefetching.

"* Minimizing the movement of data.

"* Using a high-speed technology with MCM or wafer scale implementations.

An MCAP is constructed from the component types specified in Sec. 2. These component

types are such that each member of the class may include parallel processing, memory-to-memory

pipelines, and be constructed in a building block fashion. They encompass routing components

(including buses) as well as memory, control, and processing components. By overlapping pro-

cessing with memory accessing and matching an architecture with a set of algorithms, it is

predicted that the average sustainable rate for a specific set of algorithms can attain at least

60% of the peak rate. By defining components that are simple enough to be fabricated onto

single low-density ICs, a high-speed technology may be used.

Much of an MCAP's efficiency is gained by distributing the instructions for the next algo-

rithm (or algorithm phase) to the various components while the current algorithm (or phase) is

executing. Once the algorithm begins, these instructions dictate the modes, routing patterns,

prefetching patterns, and so on of the components receiving them. After an algorithm starts,

each component operates more or less on its own except for responding to its handshaking

signals. Efficiency is further enhanced by prefetching operands from the memory subsystems.

Prefetching using programmed patterns avoids the misses that result from using ordinary caches.

2



Ip

Section 2 describes the architecture of the MCAP and the fundamental components required

to construct an MCAP. Section 3 illustrates how to match an algorithm with a given MCAP

architecture in order to attain a high sustainable rate of its peak performance. A major is-

sue related to the implementation of MCAPs is the choice of semiconductor technology and

packaging, which affect speed, gate density, power dissipation, and cost. The emphasis of imple-

mentation considerations given in this paper is on CMOS Multi-Chip Module (MCM) technology

due to its ability to achive fast inter-chip communication. Section 4 discusses various design

issues involved using the MCM approach to implement the MCAPs. Such considerations include

transistor count, loading, estimate of speed, and power dissipation.

2 MCAP Architecture

An MCAP is an attached processor that is constructed entirely from a standard set of con-

nections and components. This standard set consists of three types of asynchronous connections

and twelve types of components. The definitions of the connection and component types provide

a standard set of rules that allow the components to be easily configured in different ways to

construct attached processors that can efficiently perform different sets of algorithms.

An MCAP has exactly one instruction component and it is connected to a memory com-

ponent for storing instructions. Most of this memory component is a ROM that contains the

subprograms needed to execute the algorithms, but some of it is a RAM that can receive in-

structions (those that initiate the subprograms) from the host.

An MCAP operates by drawing an instruction stream from the memory component into

the instruction component. The instruction component uses internal instructions in the stream

to form external instructions that are then distributed to the other non-memory components

through the MCAP's (one and only) bus component. The instruction stream is illustrated in

Fig. 1. Note that all components in the instruction stream include input instruction queues.

When the non-memory components have received all of the instructions needed to perform an

algorithm, they automatically prefetch the data from the memory components, route the data
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to and from the processor components and store the results back into the memory components.

A typical data stream is depicted in Fig. 2. It is seen that all non- memory components have

input data queues. DMA units built into some controller components, which are the components

that supervise al memory accessing, are used to automatically transfer data between the host's

main memory and the MCAP's memory components while the algorithm is executing. Also, the

instruction and data streams are separate, thereby allowing the instructions needed for the next

algorithm to be distributed while the current algorithm is executing.

The three types of connections are referred to as memory, instruction, and data connections.

All connections are asynchronous and, therefore, must include handshaking lines as well as data

and, perhaps, address lines. Each memory component is connected to its controller component

by a single memory connection that consists of a bidirectional data bus, a unidirectional address

bus and a Request (Req)/ Acknowledge (Ack)/Memory Request (MReq) handshaking triplet.

Instruction connections are for passing instructions from the instruction component to the

bus component and from the bus component to one of the other non-memory components. An

instruction connection consists of unidirectional instruction and address buses and a Req/Ack

handshaking pair. The component that is to receive the instruction is indicated by the a com-

ponent number on the address bus. A transfer is initiated when the sending component puts an

address on the address bus, an instruction on the instruction bus and begins the handshaking.

Except for the connections to memory components, all connections used to transfer data are

data connections. They are used to pass data to and from the processors and consist of only a

unidirectional data bus and a Req/Ack pair. A data transfer consists of placing data on the data

bus and initiating the handshaking. Except for a write to a memory component, all transfers

include the latching of an instruction or datum into a queue at the receiving end.

The twelve types of components are divided into six categories as indicated below:

Instruction
Bus
Memory
Processor

Elementary-one input, one output
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Two-input-two inputs, one output
Comparator-two inputs, one output plus special outputs

Router
Join-multiple inputs, one output
Fork-one input, multiple outputs
Link-multiple inputs, multiple outputs

Controller

RAM-internal to MCAP, no partitions
Single-access-internal to MCAP, has partitions
E aal-access-connects to main memory, has partitions

As mentioned earlier, an MCAP contains one memory component for storing instructions,

one instruction component for executing internal instructions and forming external instructions,

and one bus component for distributing the instructions. An MCAP may contain several con-

troller, router, and processor components and several other memory components for storing

data. However, the other memory components can be connected to controller components only.

Only controller components are capable of being programmed to prefetch data from and deposit

data into data memory components. Although the instruction memory component or a dual-

access component can be connected to the host system, all other components can be connected

to the MCAP's components only.

Each non-memory component that is used during the execution of an algorithm contains an

instruction input queue, one or more data input queues, and control logic that includes a number

of registers. The instructions for an algorithm received by a component fill these registers and

then the register contents dictate the activity within the component while the algorithm is

executed. They determine the component's mode and, for a routing component, the patterns

for accepting inputs and distributing outputs. For a controller component, they determine the

memory partitions, DMA accessing patterns, and patterns for prefetching the operands needed

by the algorithm.

Each of the components that receives instructions contains a Number of Operands Output

(NumOpsOut) register that is always the last register filled before the component begins its part

in the execution of the algorithm. Each time the component outputs an operand, the NumOp-

sOut register is decremented. When the NumOpsOut register becomes zero, the component has



completed its part in executing the current algorithm. It may then distribute new values, those

needed for the next algorithm, from its instruction input queue to its registers. This cycle may

continue indefinitely. Except for reacting to the handshaking (i.e., Req and Ack) signals in its

connections, each component acts independently. The data is input to a data queue through

an input connection, processed or routed through a bus, and output through an output connec-

tion. Because separate queues are used to input instructions and data, the instruction and data

streams are completely separate.

The processor components are used for performing unary and binary arithmetic/logic op-

erations. There are three types of processor components. There are one-input elementary (E)

components, two-input (T) components, and comparator (C) components. These components

contain only two registers, a mode register and a NumOpsOut register. The mode register dic-

tates the actions taken by the component and the NumOpsOut register gives the total number

of operands that is to be output before the current algorithm is completed. Both the E and T

components may be used for either unary or binary operations, depending on the mode. When

an E component is used for a binary operation it must, of course, input both operands through

its single input connection. A T component performing a unary operation would use only one

of its two input connections.

A C component is similar to a T component, but has two special sets of lines connecting

it to the instruction component. There can be only one C component in an MCAP. As usual,

its current function is determined by its mode. One of its functions is to simply compare two

inputs and set relational flags that are then transmitted to the instruction component over one

set of the special lines. When p-_rforming comparisons, there are no outputs other than the

flag outputs. The C component can, however, also determine the maximum or minimum of a

sequence of numbers. In this case, the second set of special lines is used to output the index of

the maximum or minimum to the instruction component. The maximum or minimum is output

on the output data connection.

Routing components are for directing data along the proper paths. There are three types

of routing components, join (J) components with more than one input and one output, fork
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(F) components with one input and more than one output, and link (L) components with more

than one input and more than one output. In addition to the mode and NumOpsOut registers,

they contain registers for dictating their input and output patterns while the current algorithm

is being executed. F and L components may include broadcasting in their output patterns. J

and F components may be used in conjunction with T and E components to form pipelines with

feedback that can accumulate sums.

There are three types of controller components, RAM (R) components, single-access (S)

components, and dual-access (D) components. All controller components are for automatically

retrieving operands from and storing results in their associated memory components. In addition,

a D component contains DMA units for communicating with the host's main memory. All

controller components have an output data connection for outputting operands to the remainder

of the MCAP and an input data connection for inputting results from the MCAP. Therefore,

they must be capable of handling both an output data stream and an input data stream. A

queue is inserted in each of these data streams. A D controller also has memory connections

between its DMA units and the host's main memory.

A significant difference between the controller components and the other programmable

components is that a Number of Operands In (NumOpsIn) register as well as a NumOpsOut

register must be included. The NumOpsln register serves the same purpose for the input data

stream as NumOpsOut does for the output stream. An S component differs from an R component

in that its memory may be divided into partitions that consist of blocks of memory having

consecutive addresses. The memory components are interleaved so that the partitions, because

they occupy consecutive addresses, are spread across the components. In auddition to the mode,

NumOpsOut and NumOpsIn registers, an S component contains registers for specifying the

patterns for accessing the partitions and a set of registers for each partition for specifying the

pattern of accesses within the partition.

That portion of a D component that communicates with the MCAP is similar to an S

component except for the inclusion of a window in each partition. A window is a set of memory

locations with consecutive addresses whose base address increments after each repetition of a
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pattern. The purpose of the window is to separate the communication with the MCAP from the

communication with the host's main memory. Data that is output to or input from the MCAP

must involve accesses that are within the window and main memory transfers must involve

accesses that are o,:tside the window. Because a partition is treated as a circular memory, the

location with t',e highest address in the partition is considered to be adjacent to the one with

the lowest address and the window is considered to move in a circle.

An example architecture is given in Fig. 3. Its processing subsection includes a comparator

(C component), a negator (E component), a reciprocator (E component), a set of four pipelined

adders capable of accumulation, and a set of four pipelined multipliers. Each adder or multiplier

is constructed of four stages (a T component followed by three E components). All coinmunica-

tions to and from the processing components are through six L components, three on each side

of the processor. J and F components are provided to allow flexible use of the L components.

Also, to allow for accumulation there is a feedback connection between the F component at the

output from each adder and the J component at the input to the adder. There is a D component

to provide intermediate memory and a connection to main memory. The S component provides

internal storage.

3 Matching Algorithms to Architectures

In order to efficiently use the available logic and interconnections, an architecture must be

carefully matched to an algorithm or set of algorithms. This involves a study relating the flows,

storage and processing of the data required by the algorithm(s). Clearly, there is no point

in increasing the speed of a processing subsystem if the current interconnections and memory

hierarchy are inadequate to support the processing (or vice versa). But a good balance for one

algorithm may not be a good balance for a different algorithm. What is needed is a satisfactory

tradeoff for the work mix expected of a system and a means of evaluating the design parameters

chosen.

Space allows only a single example, so let us consider the computation that most frequently



occurs in computationally intense algorithms, matrix multiplication. Let us examine how the

MCAP in Fig. 3 could be analyzed relative to the algorithm AB = C using the middle product

method [3] where A, B and C are n x r. matrices. Fig. 4 shows the required flow of data

through the MCAP. The variable m is the number of rows that can be simultaneously stored in

each of the D and S component memories. The expressions give the total numbers of operands

transferred between the major subsystems.

The algorithm consists of the computations

•ai,• Bj = Cj i - ,..--IA

where the aijs are the elements of A, the Bss are the rows of B, and the Cis are the rows of

C. The algorithm proceeds by storing the first in elements of the first column of A and the

first m rows of B in tile D component's memory. Then the products ail Bi, for i = 1 ,

are formed and stored in the S component. Next, the first m elements of the second column

of A are brought into the D component and the products ai2Bi are formed and added to the

corresponding previous products, with the results being returned to the S component. This is

repeated n/m - 1 times, but the last time the product totals, which are the first mi rows of C,

are put in the D component and then output to main memory. The entire process is repeated

n/m times. Overlapping can be used to reduce the required time.

By matching this algorithm with the architecture in Fig. 3, it is seen that each adder and

multiplier must perform approximately n3 /2 operations and each link on the left and two of

the links on the right must perform approximately n3 transfers. (The third link on the right

is not be needed.) The approximate numbers of accesses to the S component, D component

and main memory are about 2n 3 ,n 3(1 + 1/M) and n3 /m, respectively. If T is the per stage

processing time of the multipliers, then T should also be the per stage processing time of the

adders and T/4 should be the transfer time of the links. The access times of the S component,

D component and main memory should be T/8, mT/4(m + 1) and mT/4, respectively for both

reads and writes. For T = 40 ns and m = 8, the link transfer time should be 10ns and the

average memory access times should be 5 ns, 9 ns and 80 ns. The computation rate would be

200 Mflops per second. If the MCAP were put into an MCM or wafer and memory interleaving

9



were used, these times would certainly be within the capability of current HCMOS technology.

(The join and fork components were ignored in this discussion because the communication times

are dictated by the slower link components.) BiCMOS and GaAs could produce proportionately

faster processing, memory and memory controller components, but, as seen in the next section,

increasing the speed of the link components is a more challenging problem.

Except for the unused link component, the design would utilize the link and processor com-

ponents over 95% of the time while performing a matrix multiplication. In contrast, note that

matrix addition would utilize these components only about 50% of the time on the average with

the S, multiplier and some of the routing components not being used at all. This contrast points

out the need for different designs for different algorithms and the need for compromise when a

set of algorithms must be executed on the same architecture.

4 MCM IMPLEMENTATION CONSIDERATIONS

Since the signal delays associated with a PCB implementation are expected to be pro-

hibitively excessive, it is thought that the fabrication of an MCAP in a Multi-Chip Module

(MCM) configuration or Wafer Scale Integration (WSI) are the only realistic alternatives for at-

taining high-performance. Some important design considerations for implementing an example

MCAP architecture in MCM configuration are presented in this section.

Fig. 5 show's a layout for an MCM implementation of the example architecture. In designing

this layout, we aimed toward minimizing chip to chip interconnections, maximizing interconnec-

tion densities, and using a parallel architecture. Other factors of importance are ground and

power plane generation and physical design verification. The amount of heat generated is directly

dependent on the type of substrate (MCM's are classified according to the substrate technology;

MCM-C, MCM-D, and MCM-L), selection of bonding and placement of chips. Parasitics on the

interconnects, inductances on the power lines and the I/O pin limitation are other important

considerations.
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4.1 The transistor count

In estimating the total number of transistors required to build the proposed MCAP, we made

the assumption that the technology used is high-speed CMOS. CMOS was picked as the first

benchmark technology because of its commercial maturity. In future, we pain to evaluate other

faster technologies like GaAs in comparison with the COMS benchmark. As an example, let us

consider a pipelined 64-bit floating point adder with four stages. It has:

1. Nine 64-bit registers with 4032 transistors (7 transistors per bit for a dynamic latch).

2. Seventy-four 2-input XOR gates with 592 transistors.

3. One hundred and twenty-six 2 to 1 MUX's with 504 transistors.

4. Two 11-bit adders with 528 transistors.

5. One 52-bit adder with 1248 transistors.

6. A 64-bit leading zero detector with 5000 transistors.

7. Two 52-bit barrel shifters with 4000 transistors.

8. Rounding and other control logic taking 6500 transistors.

The total is 23K transistors for an adder. By having four pipelined stages, we can achieve

stage delays of less than 20 ns (8]. This delay is of course expected to be even smaller for faster

technologies like GaAs. Similarly, we can evaluate the number of transistors for a pipelined

64-bit floating point multiplier (using an optimized, modified Booth's algorithm) and arrive at

a total of 58K transistors. Again with four pipelined stages, the delay per stage is less than

20 ns [8]. Following this procedure, the transistor count for the rest of the elements in the MCAP

are calculated and Table 1 gives the count for the various components. A figure of approximately

ten million is reckoned as the transistor count to build the whole MCAP.

In the proposed architecture, the bottle neck is the communication through the LINK ele-

ments because of their high fan-out and relatively large interconnection distances. This means
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that the output buffers for these elements must be relatively large. Next, we present the delay,

power and area calculations for the output buffers as functions of fan-out (F) and interconnection

length (1).

1. The input capacitance of a gate including the lead and ESD capacitance is Cin = 1 pF.

2. The width of the metal conductor used for an interconnection is w = 25pm.

3. The capacitance of the metal conductor is Cm1, = 30 aF/pm2 .

4. The sheet resistance of the metal is R, = 0.05fl/O.

5. The feature size is A = 0.5prm.

4.2 Load capacitance

For the load capacitance

C1 = C,,t + F x Cin, (4.1)

with

Cit= W X X Cl = (0.025) X I X 30 X 10-18 X 106 pF =0.75 x t pF

where I is in mm and Ci, = I pF. Therefore,

C, = (0.75 x t + F) pF (4.2)

The resistance of the interconnect is

Rit = R. x (11w) = 0.05 x (t/0.025) (4.3)

= 2xt fl

Thus, a LINK element with a fan-out of 19 and with an average interconnection length of 2 cm

has load capacitance of 34 pF.
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4.3 Average delay

It is known that, in general, the minimum size of a logic gate has a W/L ratio of 2. So,

we start with a ratio of 2 and go to higher values in stages in order to drive a load within a

short time. By dividing the buffering stages into the number of buffers with increasing W/L,

optimum speeds can be achieved. It has been found that a stage ratio of 3 [9] gives best results.

Also, the optimum number of stages is

N = 0.91(ln C1 + 4.19) (4.4)

where N is truncated to the nearest integer.

Using the optimum number of stages, the average delay is

Ta,,g = 0.484(N - 1) + 5C 1/3(N - 1) + 0.076 ns (4.5)

The plot of Ta.,. as a function of F and t is shown in Fig. 6. For the example with F = 19

and t = 20 mm, the delay time is seen to be 3.2 ns.

4.4 Buffer area

A simple inverter with (W/L)n = (W/L)p = 2 will need an area of 66 pm 2. A buffer with

equal rise (t,) and fall (tf) times requires (W/L)p = 2(W/L)n = 4 and the area is going to be

150 pm 2. The total area of the buffer depends on the number of stages and, hence, is a function

of F and t. We have

Area = 66 + 3[14(N - 1) + 36(1 + 3 + 32 +..--+3N- 2 )] 2 55 X 3N- Lpm2

The area as a function of F and I is plotted in Fig. 7. For F = 19 and I = 20 mm, the area is

40 x 103 /AMn2 .
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4.5 Power dissipation in the buffer

In CMOS, most of the power is dissipated during switching and, hence, dynamic power is

approximately equal to the total power. The dynamic power is

Pd = CT X V2 X fa.. " 25(Cl + Cbtfff)/Taug

where Cb,,f f-- 0.01 5 2 (3N1-) pF

Since the design of an MCAP uses asynchronous communication, the transfers over a LINK

component involves the return of an acknowledge signal and the transmission of an output enable

signal. It is estimated that the transfer rate may be as high as f = 1/2Tav, Hz. For F = 19 and

I = 20 mm, the total power dissipated by buffer is 175 mW (see Fig. 8).

4.6 Thermal management

There have been successive revolutions in device technologies, proceeding from TTL, ECL

and NMOS to the recent high-speed CMOS, BiCMOS and GaAs. Three to five orders of

magnitude reduction in minimal feature size, an order of magnitude in the characteristic chip

dimension and, more' importantly, a significant drop in the transistor switching energy from

more than 10-9 J to nearly 10-16 J [10]. Power dissipation, in a leading edge bipolar chip, with

1 cm 2 area has reached 20 - 25 W, and based on a short term extrapolation of current trends in

the packaging technology, it may well be anticipated that the power dissipation might approach

more than 100 watts for 50 million transistors on the same 1 cm2 area with a switching speed of

10 ps [10]. After comparing various existing VLSI modules in terms of thermal parameters [10],

the value of heat flux, Q = 25 W/cm2 seems to be reasonable for air cooling. Considering

again the critical LINK element in the MCAP, we estimate Q = 14.24 W/cm2 to drive 2 cm of

interconnect and 19 gates. It is reasonable to expect, therefore, that for a MCAP architecture

implemented in MCM, air cooling would be sufficient.
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5 Conclusions

The architecture to implement a class of high-performance attached processors, which can

be modularly configured to match given sets of algorithms, has been presented. The high

utilization rate of the processing components is achieved mainly by (1) minimizing the movement

of intermediate results; (2) prefetching almost all operands using intelligent memory controllers;

and (3) reconfiguring (through programming) the interconnection of the processing components

to match the needs of a given algorithm.

An example MCAP architecture was evaluated for MCM implementation. Because of its

commercial maturity, the CMOS technology was picked as the first (benchmark) technology to

be evaluated. Transistor count for implementing the MCAP was estimated at 9.85 million. In the

proposed architecture, the bottleneck is the communication through the LINK elements because

of their high fan-out and relatively large interconnection distances. For the LINK element output

buffers, delay, power and area calculations were made as functions of fan-out and interconnection

length. For example, a LINK element with a fan-out of 19 and an average interconnection length

of 2 cm has a load capacitance of 34 pF, has a delay time of 3.2 ns, occupies an area of 40,000

J.m2 and dissipates 175 mW of power. Heat flux was estimated at 14.2 W/cm2 , which leads us

to believe that air cooling will be sufficient for this MCAP architecture implemented in MCM.

Further improvements in MCAP performance could be obtained by: (1) Reducing the min-

imal feature size to 0.5 pm or 0.2 pm, (2) Minimizing the chip to chip spacing by mounting

the chips on two sides, (3) Employing a higher speed technology like GaAs ( HEMT's), (4).

Perhaps, using Wafer Scale Integration.
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4

ELEMENT DESCRIPTION # OF TRANSISTORS

MEMORY ELEMENT HAS 4K EACH OF RAM AND ROM 1.84M

INSTRUCTION HAS 8 WORDS OF FIFO 10.0K

BUS HAS 8 WORDS OF FIFO 10.0K

ELEMENTARY HAS 8 WORDS OF FIFO 10.0K

TWO INPUT HAS 8 WORDS OF FIFO 12.0K

JOIN 3 INPUTS AND FIFO OF 8 WORDS 14.0K

FORK 3 OUTPUTS AND FIFO OF 8 WORDS 07.0K

LINK 4 INPUTS AND 19 OUTPUTS 25.0K

STATIC RAM 16 ELEMENTS OF 1K EACH 6.30M

SINGLE ACCESS CONTROLS 8 MEMORY ELEMENTS 11.OK

CONTROLLER

DUAL ACCESS CONTROLS 8 MEMORY ELEMENTS 41.0K

CONTROLLER AND 3 DMA CHANNELS

COMPARE SENDS OUT FLAGS AND INDICES 25.0K

RECIPROCATE USING CONVERGENCE METHOD 50.0K

NEGATE INVERT THE SIGN BIT 01.OK

F.P ADDER USING CLA'S, BARREL SHIFTERS ........ 23.0K

F.P MULTIPLIER USING MODIFIED BOOTH'S ALGORITHM 61.0K

MCAP Total number of Transistors 9.85 Million

MCM With 50 Chips and 300 I/O's 9.85 Million

Table 1. Transistor count for the various MCAP components
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ABSTRACT

A new architecture for high-performance parallel attached processors is described in this pa-
per. Based on this architecture, an attached processor can be implemented as multiple memory-
to-memory pipelines, each being constructed with a class of fundamental components. The
unique features are that the attached processor can be configured to match a set of algorithms
and its memory controllers can be programmed to fit the access patterns required by the algo-
rithms. As a result, high utilization of the processing logic for given sets of algorithms can be
obtained. Detailed performance analyses of application algorithms, including solution of linear
equations and fast Fourier transform, based on the proposed architecture are given. Technology
to implement the proposed architecture and packaging considerations are also discussed.

Index Terms: Attached processor, interconnected pipeline, memory-to-memory pipeline, sus-
tained execution rate.
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"* 1 Introduction

An attached, or back-end, processor is a processing system that is connected to a host

computer for the purpose of very quickly executing most of the overall system's computational

tasks. In such an organization, "the host is a program manager which handles all 1/0, code

compiling, and operating system functions, while the back-end attached processor concentrates

on arithmetic computation with data supplied by the host machine" [1].

Typical early attached processors were the AP-120B and FPS-164 made by Floating Point

Systems, Inc., the IBM 3838, and the MATP made by Datawest, Inc. [1], 12), [31. These attached

processors all have their own data memories and transfer data between these memories and

the main memories of their hosts using DMA data channels. They also include their own code

memories where subprograms may be permanently stored or downloaded from their hosts. These

subprograms are initiated by commands from the host and supervise the data flows from the

attached processor's data memories, through the attached processor's processing elements, and

back into the data memories.

Although the early attached processors included limited multiprocessing, the more recently

implemented processing arrays are also controlled by a host (e.g., the PAX computer [4]) and are

designed to perform most of the overall system's computational tasks. Therefore, these arrays

and even the array processing portions of today's supercomputers, suph as the Cray series [1], [3)

could be interpreted as attached processors, although the host is then sometimes referred to as

a front-end computer.

The specific purpose of an attached processor is to execute members of a set of algorithms

very quickly. The broader the set of algorithms the more generally applicable the attached

processor. The underlying goal of the designer is to efficiently utilize the hardware for as broad

a set of algorithms as possible. However, for most current designs, the average sustainable ex-

ecution rates have been found to be only 5% to 20% of their peak rates, which are determined

by summing the maximum computational rates of the processing elements. For example, the

sustainable rate for a Cray X-MP with four processors may be as low as 5% for some algo-

rithms [5]. Also extensive evaluations of recent high-performance computations using Lapack

are given in [61 and using NSA parallel benchmarks are given in [7]. Although some of the lost

efficiency is necessitated by the algorithms, much of it is due to memory accessing and contention

for shared resources in general, including internal buses.
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Described in this paper is a class of high-performance attached processors called Modularly

Configurable Attached Processors (MCAPs) which can attain quickness and high utilization

through:

"* Closely matching their architectures to the set of algorithms they are to execute.

"* Overlapping of processing and memory accessing by using memory prefetching.

"* Minimizing the movement of data.

e Using a high-speed technology with MCM or wafer scale implementations.

An MCAP is constructed from the component types specified in Sec. 2. These component

types are such that each member of the class may include parallel processing, memory-to-memory

pipelines, and be constructed in a building block fashion. They encompass routing components

(including buses) as well as memory, control, and processing components. By overlapping pro-

cessing with memory accessing and matching an architecture with a set of algorithms, it is

predicted that the average sustainable rate for a specific set of algorithms can attain at least

60% of the peak rate. By defining components that are simple enough to be fabricated onto

single low-density ICs, a high-speed technology may be used.

Much of an MCAP's efficiency is gain&d by distributing the instructions for the next algo-

rithm (or algorithm phase) to the various components while the current algorithm (or phase) is

executing. Once the algorithm begins, these instructions dictate the modes, routing patterns.

prefetching patterns, and so on of the components receiving them. After an algorithm starts,

each component operates more or less on its own except for responding to its handshaking

signals. Efficiency is further enhanced by prefetching operands from the memory subsystems.

Prefetching using programmed patterns avoids the misses that result from using ordinary caches.

Section 2 gives an overview of the MCAP architecture and the fundamental components

required to construct an MCAP. One of the most desirable features of the MCAP is its ability

to be mod;ýIarly configured to match given sets of algorithms in order to predetermine the

data pattein' to be prefetched. Sections 3 and 4 illustrate how to match typical application

algorithms with MCAP architectures. Detailed performance analyses are given, which show high

sustainable rates relative to the peak performance. The algorithms analyzed include solution

of linear equations and fast Fourier transforms. Finally, implementation considerations of the

MCAP including semiconductor technoligies and packaging are discussed in Section 5.
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2 MCAP Architecture

An MCAP is an attached processor that is constructed entirely from a standard set of con-

nections and components. This standard set consists of three types of asynchronous connections

and twelve types of components. The definitions of the connection and component types provide

a standard set of rules that allow the components to be easily configured in different ways to

construct attached processors that can efficiently perform different sets of algorithms.

An MCAP has exactly one instruction component and it is connected to a memory com-

ponent for storing instructions. Most of this memory component is a ROM that contains the

subprograms needed to execute the algorithms, but some of it is a RAM that can receive in-

structions (those that initiate the subprograms) from the host.

An MCAP operates by drawing an instruction stream from the memory component into

the instruction component. The instruction component uses internal instructions in the stream

to form external instructions that are then distributed to the other non-memory components

through the MCAP's bus component. All components in the instruction stream include input

instruction queues. When the non-memory components have received all of the instructions

needed to perform an algorithm, they automatically prefetch the data from the memory compo-

nents, route the data to and from the processor components and store the results back into the

memory components" All- non-memory components have input data queues. DMA units built

into some controller components, which are the components that supervise all memory access-

ing, are used to automatically transfer data between the host's main memory and the MCAP's

memory components while the algorithm is executing. Also, the instruction and data streams

are separate, thereby allowing the instructions needed for the next algorithm to be distributed

while the current algorithm is executing.

The three types of connections are referred to as memory, instruction, and data connections.

All connections are asynchronous and, therefore, must include handshaking lines as well as data

and, perhaps, address lines. Each memory component is connected to its controller component

by a single memory connection that consists of a bidirectional data bus, a unidirectional address

bus and a Request (Req)/ Acknowledge (Ack)/Memory Request (MReq) handshaking triplet.

Instruction connections are for passing instructions from the instruction component to the bus

component and from the bus component to one of the other non-memory components. An

instruction connection consists of unidirectional instruction and address buses and a Req/Ack

handshaking pair. The component that is to receive the instruction is indicated by the a com-
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ponent number on the address bus. A transfer is initiated when the sending component puts an

address on the address bus, an instruction on the instruction bus and begins the handshaking.

The Free line provides the instruction component with a means for detecting when all com-

ponents connected to the bus component are completely inactive. Except for the connections

to memory components, all connections used to transfer data are data connections. They are

used to pass data to and from the processors through routing components and consist of only

a unidirectional data bus and a Req/Ack pair. A data transfer is consists of placing data on

the data bus and initiating the handshaking. Except for a write to a memory component, all

transfers include the latching of an instruction or datum into a queue at the receiving end.

The twelve types of components are divided into six categories. As mentioned earlier, an

MCAP contains one memory component for storing instructions, one instruction component for

executing internal instructions and forming external instructions, and one bus component for

distributing the instructions. In addition, an MCAP may contain several controller, router, and

processor components and several other memory components for storing data. Each non-memory

component that is used during the execution of an algorithm contains an instruction input queue,

one or more data input queues, and control logic that includes a number of registers. The

instructions for an algorithm received by a component fill these registers and then the register

contents dictate the activity within the component while the algorithm is executed. Each of

thes? components contain a Number of Operands Output (NumOpsOut) register that is always

the last register filled before the component begins its part in the execution of the algorithm.

Each time the component outputs an operand, the NumOpsOut register is decremented. When

the NumOpsOut register becomes zero, the component has completed its part in executing the

current algorithm. It may then distribute new values, those needed for the next algorithm, from

its instruction input queue to its registers. This cycle may continue indefinitely. Except for

reacting to the handshaking signals in its connections, each component acts independently.

The processor components are used for performing unary and binary arithmetic/logic op-

erations. There are three types of processor components. There are one-input elementary

components, two-input components and comparator components. These components contain

only two registers, a mode register and a NumOpsOut register. The mode register dictates

the actions taken by the component and the NumOpsOut register gives the total number of

operands that is to be output before the current algorithm is completed. Both the elementary

and two-input components may be used for either unary or binary operations, depending on

the mode. A comparator component is used to compare values or find maxima or minima and
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returns appropriate flag values to the instruction component.

Routing components are for directing data along the proper paths. There are three types

of routing components, join components with multiple input and one output, fork components

with one input and multiple output, and link components with more than one input and more

than one output. In addition to the mode and NumOpsOut registers, they contain registers for

dictating their input and output patterns while the current algorithm is being executed. Fork

and link components may include broadcasting in their output patterns.

There are three types of controller components, RAM components, single-access components,

and dual-access components. All controller components are for prefetching operands from and

storing results in their associated memory components. A single-access component differs from a

RAM component by permitting its associated memory to be divided into partitions. In addition

to the logic in a single-access component, a dual-access component contains DMA units and

connections for communicating with the host's main memory. All controller components have

an output data connection for outputting operands to the remainder of the MCAP and an input

data connection for inputting results from the MCAP.

An example architecture is given in Fig. 1. Its processing subsection includes a comparator,

a negator (elementary component), a reciprocator (elementary), a set of pipelined adders capable

of accumulation, and a set of pipelined multipliers. Each adder or multiplier is constructed of

two or more stages (a two-input component followed by one or more elementary components).

All communications to and from the processing components are through six link components,

three on each side of the processor. Join and fork components are provided to allow flexible use

of the link components. Also, to allow for accumulation there is a feedback connection between

the fork component at the output from each adder and the join component at the input to the

adder. There is a dual-access component to provide intermediate memory and a connection to

main memory. The single-access component provides internal storage.

3 Performance analysis of an MCAP

One of the major advantages of the MCAP architecture compared to cache memory or vector

processors is the ability of prefetching a pre-determined data pattern for any given algorithm.

The controller component can be set up in a way that the data stream for a given algorithm

can be prefetched in ahead of time, so that the processor components can be kept busy during
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the entire operation period. Thus, the sustained speed of an MCAP can be at least at 60% of

the peak performance for most of the application algorithms.

To demonstrate the concept of prefetch data pattern in an MCAP, a sample architecture

given in Fig. I is considered first. All processing components are made up of four stages each

having a stage delay time of 20 ns. This gives a peak performance of 450 MFLOPS. Six 10 ns

link components are used to serve the processing components, three at the inputs and three at

the outputs. One link component at the input and output is reserved for feedback operation,

i.e., to feedback output from an adder (or multiplier) to another multiplier (or adder). So, only

two out of the three link components at the input or output can bring in data from memory

component or store data to the memory component.

This allows 300 M transfers/s at both the inputs and outputs, but only 200 M transfers/s

to/from memory subsystem. Because the fork and join components are each connected to

two link components they have been given a delay time of 5 ns. The FIFO buffers that are

connected to the dual controller component also have a 5 ns per stage delay time. To supply

200 M operands/s the memory subsystem of the dual controller consists of 8 interleaved 40 ns

memory components.

To demonstrate the effectiveness of such a system consider the solution of a system of linear

equations using Gaussian elimination. A group of n linear equations can be expressed as follows:

allxl + a12 z2 + + alnn = CI

a 2 1xl + a 22 X2 + + a2nxn - C 2

aIzI +an2X2 +-'.+ann = Cn. (3.1)
Gaussian elimination is one of the most efficient methods to solve Eq. (3.1). In the first phase

of the solution Eq. (3.1) is reduced to

a'1X 1 + 42z 2 +.. + a'lzn = C=
I

a22Z2+'+a 2 Zn -- C2=

an,,xn = Cn (3.2)

In the second phase, the variables x, to z,X can be obtained by the following computations:

C,'

zk = C-7-•-k+l a'izi, k =n-1,n-2...,1 (3.3)
alk
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The total number of computations needed to solve Eq. (3.1) is derived below. The following
algorithm reduces Eq. (3.1) to Eq. (3.2):

Algorithm I
fork- =ton-1 do

fori=k+lton do
forj=k+l ton do

a 4-- a,, x akk - aik x akj
j.--j+t

end .do

C = Ci x akk - C2 x aijk
i4---i+1

end-do
k +- k + I

end-do

The total number of computations in Algorithm I is

3[n(n - 1)+(n- 1)(n-2)+...+2 = 2,n(n- 1)(2n,- 1)+ ,n(n-. 1). (3.4)
2 2

From Eq. (3.2), x, to X, can be calculated using Eq. (3.3). The number of computations in
Eq. (3.3) is

n

2 +4 + ... +2n = (2i- 1) = n(n+ 1). (3.5)

The total number of computations required to solve n simultaneous linear equations is the sum
of Eqs. (3.4) and (3.5), which is

1 3nn 2)2n =~ 1 1)n+
C = jn(n - 1)(2n - 1) + in(n - 1) + n2 1)(2n- 2 1) (3.6)

The detailed data flow and computing pipelines in the MCAP can be illustrated using the

diagram in Table. 1. The memory controller is set up to feed in a pair of aii's for the multipliers

and the outputs of the multipliers are chained to the adders using the L components. The

multiplications aij x akk and aiA x aki are executed in different multipliers. For example, the

first pair of multiplications ai x akk and aik X aki is executed in M, and M2 , respectively. The

second pair of multiplications aik xaak, and aik x ak is executed in M3 and M4 , respectively. This

sequence will repeat until all multipliers are busy executing. Note that akk can be kept in the M

component for the two inner loops and aik can be kept in the M component for the innermost

loop. Therefore, the D controller does not need to feed akk and aik into the multipliers with

each multiplication. The data streams to each of the multipliers is shown below. The following

tables assume n = 20, i.e., there are 20 simultaneous linear equations.
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14 13 12 11 10 9 8 7 6 5 4 3 2 1
- a2,12 - a2,10 - a24 (2 - 24 C - a 2 2  - aii - M,

a1 , 12  - a1 ,18 als - (116  - a14 - a12 -- 421 - .A 2

- a2.13 - a2,11 - a29 - a27 - 0125 - 023 a a 1l -•1M 3

a 1 ,1 3  - t,II -1 419 - a17 - tls - 013 - - a2 1 -•Af 4

Stage 2 Stage I Stage 4 Stage 3 Stage 2 Stage 1
(2 x 10ns) (2 x 10ns) (2X 10ns) (2 x 10ns) (2 x 10ns) (2 x 10ns)
Multipliers produce outputs

Table 1. Data pattern to fill the multipliers

Each clock cycle in Table. I is 10 ns, for every 2 clock cycles the multiplier can move the

operands to the next stage while keeping either akk or ak in the first stage. Thus, each multiplier

only needs one operand for each multiplication after the 3P clock cycle. At the end of the l01h

clock cycle, the pipelines in all 4 multipliers will be filled and two products are produced every

10 ns. These outputs are chained to the adders to perform the subtractions. Although M, and

M3 (or M 2 and M4 ) can produce one product at the same clock cycle, there is only one link

component at the input and output that can be used to feedback the results to the adders. So,

only one product can be sent to the adders at one clock cycle. The data pattern is shown in

Table. 2. In this table, pairs of outputs from the multipliers are sent to the adders where they

are subtracted. Since each adder also consists of a 20 ns per stage pipeline, an adder can be

filled with new operands every 2 clock cycles. Because A, can start to execute its two operands

at the 12 th clock cycle, it can take two more operands at the 14th clock cycle. So, only two

adders are needed to perform the subtractions of the outputs generated by the 4 multipliers.

At the end of the innermost loop, aik needs to be updated in the multipliers that hold this

coefficient, but the other multipliers that hold the ahk can continue to execute. However, in

order to match the output patterns of the 8 multipliers, an idle cycle is inserted into those

multipliers that hold the akk. The data pattern is shown in Table. 3.

At the end of the two inner loops, two extra operands need to be sent to the multipliers.

Also, two extra clock cycles need to be inserted at the beginning of the outer loop. The data

pattern is shown in Table. 4.
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22 21 20 19 18 17 16 15 14 13 12 11
- - - - - - - - M -" At

. . . . . . ..- - M3 - - At

. . . . . . . . .- A2  - - - A2
-. . . . . . . . M.-,14 - - -A2

-. . . . . . . - ..- - - - A
-. . ... . ,313 . . .-. ..- A ,
-. . ... i 3 . . . . . . . A 2

. . . . lM 4  . . . . . . . .- A2

-- -- -- A1  . . . . . . . . -'A 1
- -- M 3  . . . . . . .-. .- A,

-- M 2  . . . . . . . . . . . A2

M,4  - A 2

Stage 2 Stage 1 Stage 4 Stage 3 Stage 2 Stage 1
(2 x 10ns) (2 x 10ns) (2 x 10ns) (2 x 10 s) (2 x 10ns) (2 x 1Ons)
Adders produce outputs

Table 2. Data pattern to fill the adders for subtraction

-a3 - a3 4 - a32 - - a 2 ,2 0 - 02,18 - MI
a 16 - a14 - a 12 - a31  al.2 -0 al18  - A M2
- a 3 7 - a35 -- a 3 3 - - C 2  - a2,19 -. M3
a17 - als - a13 - a3 l C1  - al,19 - - M4

Beginning of another inner most loop (i = 3) End of the first inner most loop

Table 3. Data pattern at the ena of the innermost loop

- a37 - a3 5 - a33 - 422 - a20,20 - a20,18 -- At 1
a27 - a25 - a23 - a32 - al.2o - 411,8 -- M2

- a38 - a36 - a34 -- 22 - C 20  - a20,19 - M3

a23 - a26 - 024 - a32 - C 1  - 01,19 - - M4

Beginning of the second outer loop (k=2) End of the (n - 1)"' inner most loop

Table 4. Data pattern at the end of the two inner loops and the start of the second outer loop.

The total number of clock cycles needed to feed in all the data patterns in Algorithm 1 is:

n-I n-I 1 3
Niade+ = +i2 +3i+2(n -1) =n(n-1)(2n-1)+ n(n-1)+2(n-1)

i:1 i:1

= n(n - 1)(2n - 1) + 1(n - 1)(3n + 4). (3.7)

The sustained performance in executing Eq. (3.3) is not as good as for Algorithm 1, because

zk must be calculated sequentially. Basically, the reciprocal of 1/W,4, multiplication of alkizi,
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and the subtraction of Ck - akiz, must be executed in series. So, when n = 1, 8 pipeline stages

(16 clock cycles) are needed to calculate r1 , and 12 pipeline stages are needed when n = 2. When

n > 3, the sequence of multiplications and subtractions can be executed in pipeline fashion, so

only one extra clock cycle is needed for each extra multiplication or subtraction. Thus, we have

the following equation.

16 n=1

40 n=2N~cije 2 = (3.8)
40 + 24(n - 2) + 2 E-- i(38)

=40 + (n- 2)(n + 23) n > 3

For n > 3 the sustained performance for solving Eq. (3.1) is equal to C/(N'Scaei + Nycle2).

Tn= (NNVCIei + Nccle2) X 1Ons

M= n(n - 1)(2n- 1)+ 2(5n - 1) (3.9)MF LO P Ssstasned 2 2 (.9

For example, when n = 20, we have T" = 38.92ps and the total number of floating point

operations is C = 8400, thus the sustained performance for executing Eq. (3.6) is C/T,, .: 215.8

MFLOPS. The theoretical peak performance of the MCAP shown in Fig. 1 is 450 MFLOPS.

Thus, the sustained performance of the MCAP is 48% of its peak performance. When n = 100,

the sustained performance is 284.4 MFLOPS, which is 63.1% of the peak performance. When

n = 1000, the sustained performance is 298.5 MFLOPS, which is 66.5% of the peak performance.

The sustained computation speed and ratio to the theoretical peak performance vs. n is plotted

in Fig. 2. Note that in this figure two ratios are given, one is for configuration shown in Fig. 1,

the other ratio is given for the case of 4 multipliers, 2 adders, and 1 reciprocal, because only 2

adders are needed to solve the simultaneous linear equations.

The advantage of the MCAP over a conventional vector processor, such as Cray-1, is that

the data flow is supported by an intelligent memory controller which knows the pattern of the

data flow for a given problem. Therefore, the processing components can be kept busy most

of the time as long as the data transfer rate on the memory controller and the L components

is fast enough. In the Cray-i computer, the data must first be stored in vector registers. For

small problem sizes, such as n < 20, the sustained performance is usually less than 10% of its

theoretical peak performance. However, in the MCAP, the sustained performance is around 48%

(62%) of its peak performance even when n = 20.
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4 Matrix Multiplication in Discrete Fourier Transform Evalu-

ation

In signal processing, frequency analysis is very often used to get a better knowledge of the

nature of the signal. The Discrete Fourier Transform (DFT) used to obtain the spectrum of an

N-point sequence is defined as

N-i

X(k) = E x(n)exp(-j2irnk/N). (4.1)
n=O

Eq. (4.1) can be formulated as a matrix-vector product; the matrix is formed by the N coefficients

obtained from the different powers of the N-th root of unity and the vector is formed from the

N data samples.

The total number of arithmetic operations for an N-point DFT is N(N-1) multiplications

and N(N-1) additions. If we consider complex signals, there will be 4N(N-1) real multiplications

and 4N(N-1) real additions. A total of approximately 8N 2 arithmetic operations.

The basic architecture, shown in Fig. 1, used in performing matrix multiplication, can be

used to perform the DFT evaluation. In order to obtain a faster DFT, we may apply the divide

and conquer strategy which is simply to break a large matrix-vector multiplication into many

smaller ones7.

Effectively, there is no saving in the computational effort. The benefit of this approach is

that we can obtain the DFT at a faster rate by sharing the computation load among the several

processors elements.

An efficient algorithm to evaluate the DFT is the Fast Fourier Transform (FFT), which has

two versions: Decimation-in-time (DIT) and Decimation-in-frequency (DIF). This is another

approach to obtain a faster DFT by reducing the computational requirements. It is believed

that a combination of the two approaches, that is sharing a reduced number of computations,

will be a good strategy to obtain the DFT in a short time. In this paper, we will concentrate

on the study of the efficient implementation of the one-stage FFT algorithm using an MCAP

architecture. The division of a long DFT sequence will be considered later. Following, we study

the implementation of one-stage FFT algorithm using the basic MCAP architecture, and another

architecture is proposed for an efficient FFT evaluation.
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4.1 Comparison of the DIT and the DIF FFT Algorithms

It is well-known that by using the FFT algorithm, the number of arithmetic operations can

be reduced drastically to the order of 2Niog2N real multiplications and 3Nlog2 N real additions

for an N-point DFT. Depending on the fashion of separating the input data, there are two

approaches to the FFT algorithm. When the input data are decomposed into even or odd, the

FFT is achieved from decimation in frequency (DIF). When the input data is processed in first

and second half, then we are evaluating the FFT by decimation in time (DIT). In each case,

further division of the partial results is possible in the same manner. Fig. 3 shows the basic

butterfly computations in both the DIF and the DIT FFT algorithms respectively. Fig. 3 also

shows the butterflies with the real and imaginary parts separately. These last figures give a

better description of the algorithms. Repeating the DIF and DIT operations to intermediate

results, the flow graph of a 16-point DIF- and DIT- FFT can be obtained as shown in Fig. 4

[DeFatta].

It can be seen that the DIF-FFT and the DIT-FFT are working in opposite manner. The

DIF-FFT is working in a decentralizing way in which the processing can be operated inde-

pendently in the following stage. However, no data processing is possible before the previous

processor has completed its work. On the other hand, the DIT-FFT is working in a more and

more centralizing manner. At the input stage, we may have many basic two-input butterflies.

As we are proceeding to the final stage, we will have larger distance between the input of the

butterflies. This means that if parallel operations for the DIF-FFT and the DIT-FFT are intro-

duced, they are occurring in different order. Parallelism has to be introduced at the later stages

in the DIF-FFT algorithm, but at the early stages in the DIT-FFT counterpart.

A closer inspection at the basic butterfly units tells us that in the DIT-FFT approach,

the multiplication is done first and in the DIF-FFT case, the multiplication is done at an

intermediate stage. Furthermore, by referring to the computation expansion tree for the DIF-

FFT and the DIT-FFT in Fig. 5, it can be seen that the DIT approach has a smaller span and

less number of stages than the DIF approach. Therefore, in our further study, we consider only

the DIT approach because it is more suitable for parallel implementation and it involves less

computations.
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4.2 The FFT Implementation with the Basic Architecture

As discussed in the previous section, several features of the DIT-FFT favor its use in the

FFT implementation. On the other hand, the DIT-FFT is easier to adapt to our architecture.

Since the basic architecture is aimed to perform general algorithms, some of its components are

not used in the FFT algorithm. A data-flow timing diagram showing the processing elements

(PEs) that are. occupied at a certain stage is constructed to help analyzing if a linear pipeline

can be achieved.

Fig. 6 shows the data-flow timing diagram for the DIT-FFT implementation using the basic

architecture. The total time required for one-stage FFT computation is 400ns, from memory

to memory. It should be noted that several PEs are reused in just one FFT computation.

This feature hinders our objective of achieving a linear pipeline since the more reuse of a PE

in a computation, the more PE time has to be reserved for the feedback of partial results.

Consequently, the processing new data will be delayed. Therefore, the input data cannot flow

smoothly through all the PEs. In the timing estimation, we have assumed that the delays for

each architecture's element are as follows: Memories, links : 10ns, Joints, forks : 5ns, and Adders

and Multipliers : 20ns per stage.

The highest degree of parallelism is 6 computations, and this occurs at the 25-30ns time-

slot. A high degree of contention occurs with the links because many partial results are fed

back from the multipliers' and the adders' outputs to the adder inputs for further processing.

The minimum time-lapse for the next FFT computation is approximately 290ns. To solve this

problem, we propose another architecture in Fig. 7, that minimizes this type of data feedback.

In addition, several elements (the negator, the reciprocator) that are not used in the DIT-FFT

algorithm are changed by adders in order to achieve a more linear data flow.

4.3 The FFT Implementation with the Proposed Architecture

The proposed architecture is conceived based on the computation expansion tree in Fig. 5.

First, the multiplications are performed; next, there are a substraction and an addition to get

intermediate values that finally arrive to the last level, where two additions and two substraction

are executed. Once the described flow is figured out, the modifications to the basic architecture

follow. The major modifications in the new proposed architecture are that the negator and the

reciprocator are replaced by two adders. The multipliers' outputs are hardwired to the inputs
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of two adders which are reversed. The outputs of these two adders are hardwired to the forks

inputs connected to the remaining adders. In this way, we do not have to use the links (#0, #1

or #2) to feed back the partial results anymore. This architecture also relieves us from re-using

two adders due to replacing of the unused elements with adders. The data-flow timing diagram

for the DIT-FFT implementation is shown in Fig. 8. It can be seen that the flow is much linear

than the one for the original architecture. The highest degree of parallelism in one butterfly

operation is 5 computations and it occurs at the l5ns time-slot. Clearly, when several butterfly

operations are in the pipeline the degree of parallelism goes from 10 to 15 computations as

observed in Fig. 9. Using the same delays for the elements as before, the total delay for one-

stage FFT computation is 350ns (from memory to memory). The minimum time-lapse fo,- the

next FFT computation is 5ns. For the first stages of computations, the a's operands are loaded

in the single access component. After the first stages, the next ordering of data will be done by

the links' components.

4.4 Conclusions and Future Work

It is found that the general matrix-vector/matrix-matrix product is different from the FFT

algorithm in that the adder output is continually updated with the next input in the matrix

multiplication. This is not the case for the FFT algorithm, and the direct feedback path in

the two adders are not helping very much. This is the reason why we removed the two direct

feedback paths in the two adders. The study shows that the basic architecture is not the best

in performing the FFT algorithm. However, with the suitable choice of the FFT approach and

modifications of the basic architecture, we are able to obtain a relatively linear pipeline. In

addition, the new architecture allows the next FFT computation to take place about 31 times

faster than the basic architecture with almost 90% efficiency in the components.

The modifications made in the basic architecture are easy. There is no additional component

requirement. In fact, some of the components present in the basic architecture are redundant

for the FFT algorithm. Overall, the proposed architecture can attain a more efficient FFT

calculation without a great cost for modifications.

The future work is related to the simulation of the discussed algorithms using the presented

architectures. To achieve that, the MCAP simulator, assembler and editor will be used. First,

the basic architecture and the proposed architecture must be created using the MCAP editor

which will produce files with the information of each component and their connections. Next, a
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program of the DIT-FFT algorithm must be implemented using the basic architecture and an-

other using the proposed architecture. Then, the programs must be fed to the MCAP assembler

in addition to the architecture files created by the editor. The assembler will create a load file

based on the program file and the corresponding architecture file. Finally, the load file and the

architecture file will be fed to the simulator that will simulate the DIT-FFT algorithm using the

basic or the proposed architecture. The simulator's results will be time analyses and efficiency

information per component among other information. The simulation could be done several

times using different parameter values for the architectures' components until the best set of

values and the best architecture distribution is found. Then, the design and implementation

stage of the components could start. [8].

5 Technology and packaging considerations

The most important parameters related to the design of high performance computers are

speed, power consumption, gate capacity of a single chip, yield, wafer size, and production

cost. The highest possible speed is the ultimate goal, but this goal is tempered by physical

and economical limitations such as heat dissipation and yield. The current leading contenders

for implementing high-performance computers are silicon based bipolar complementary metal-

oxide-semiconductor (BiCMOS) logic, silicon based emitter coupled logic (ECL), and GaAs

technologies (9].

Of these technologies, ECL offers high speed, but its relatively high power dissipation may

well prove prohibitive for some applications. BiCMOS provides lower power dissipation and the

largest number of gates per chip; but it is relatively slow. Because of its high speed and low

power dissipation, the GaAs technology is dearly a best technology for high speed computer

applications. Higher than 500 MHz operation and 88 nW/MHz gate power dissipation are now

available. Operation above 750 MHz with an extremely low power dissipation of 44 nW/MHz

gate have been demonstrated [101. Since GaAs is a relatively new technology, it still suffers from

small wafer size (10 cm diameter), low yields and high production costs. It is expected however

that these problems will be overcome in the near future as the technology matures.

With regard to packaging, speed is primarily determined by communication delays. These

delays can be reduced by increasing the power to the drivers, but this increases the heat that

must be dissipated from the system's ICs. There are four communication levels correspond-
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ing to the four packaging levels:(l) on chip, (2) on-package but off-chip, (3) off-package, and

(4) off-PC-board. In going from on-chip to off-PC-board the communication paths increase in

length and there is a drop off in communication speed. For a given technology one would put

as many gates on each chip as yield limitations would permit. Beyond this, the current trend

in high-performance design is toward using on-package, off-chip multichip modules (MCMs).

Although MCMs are expensive to produce they provide a much improved speed-power tradeoff.

Experimental work has been done toward 3-dimensional MCMs [11], which may increase inter-

chip communication rates to 1 GHz, as opposed to 250 MHz for an equivalent 2-dimensional

chip array. MCAPs are constructed of relatively simple components so that gate capacity is not

a limiting factor. However, the communication paths would be at least one operand (say 64

bits) wide and must be very fast. Therefore, heat dissipation by the driver circuits would be a

serious problem.

The example MCAP architecture (Fig. 1) was evaluated for MCM implementation [12]. The

layout for the MCM implementation is shown in Fig. 10. Because of its commercial maturity,

CMOS technology was picked as the first (benchmark) technology to be evaluated. Transistor

count for implementing the MCAP was estimated at 9.85 million. In the proposed architecture,

the bottleneck is the communication through the LINK elements because of their high fan-out

and relatively large interconnection distances. This means that the output buffers for these

elements must be relatively large. For the output buffers,- delay power and area calculations

were made as functions of fan-out (F) and interconnection length [12]. For example, a LINK

element with a fan-out of 19 and an average interconnection length of 2 cm has a load capacitance

of 34 pF, has a delay time of 3.2 ns, occupies an area of 40,000 pm2 and dissipates 175 mW of

power. Heat flux was estimated at 14.2 W/cm2, which leads us to believe that air cooling will

be sufficient for this MCAP architecture implemented in MCM. [12]

6 Conclusions

The architecture to implement a class of high-performance interconnected ipelines attached

processors, which can be modularly configured to match given sets of algorithms, has been pre-

sented. Performance analyses of typical application algorithms are given. The high utilization

rate of processing components is achieved mainly by (1) minimizing the movement of inter-

mediate results; (2) prefetching almost all operands using intelligent memory controller; and

(3) reconfiguring (through programming) the interconnection of the processing components to
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match the needs of a given algorithm. Based on the proposed architecture, we believe that an

MCAP can be implemented in MCM using CMOS technology.
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